Skip to Main Content

Astrophysics

People have gazed at the stars, given them names, and observed their changes for thousands of years. NASA joined the ancient pursuit of knowledge of our universe comparatively recently.

Goals
The science goals of Astrophysics are breathtaking: we seek to understand the universe and our place in it. We are starting to investigate the very moment of creation of the universe and are close to learning the full history of stars and galaxies. We are discovering how planetary systems form and how environments hospitable for life develop. And we will search for the signature of life on other worlds, perhaps to learn that we are not alone.

NASA¹s goal in Astrophysics is to "Discover how the universe works, explore how it began and evolved, and search for life on planets around other stars." Three broad scientific questions emanate from these goals.

How does the Universe work? Probe the origin and destiny of our universe, including the nature of black holes, dark energy, dark matter and gravity.
How did we get here? Explore the origin and evolution of the galaxies, stars and planets that make up our universe.
Are we alone? Discover and study planets around other stars, and explore whether they could harbor life.

Current Programs
Astrophysics comprises of three focused and two cross-cutting programs. These focused programs provide an intellectual framework for advancing science and conducting strategic planning. They include:

  • Physics of the Cosmos
  • Cosmic Origins
  • Exoplanet Exploration
  • Astrophysics Explorer Program
  • Astrophysics Research

Current Missions
The Astrophysics current missions include three of the Great Observatories originally planned in the 1980’s and launched over the past 24 years. The current suite of operational Great Observatories include the Hubble Space Telescope, the Chandra X-ray Observatory, and the Spitzer Space Telescope. Additionally, the Fermi Gamma-ray Space Telescope explores the high-energy end of the spectrum. Innovative Explorer missions, such as the Swift Gamma-ray Explorer and NuSTAR, complement the Astrophysics strategic missions. Together these missions account for much of humanity's accumulated knowledge of the heavens. Many of these missions have achieved their prime science goals, but continue to produce spectacular results in their extended operations.

NASA-funded investigators also participate in observations, data analysis and developed instruments for the astrophysics missions of our international partners, including ESA's XMM-Newton, Herschel, and Planck missions, and JAXA’s Suzaku.

Near Future
The near future will be dominated by several missions. Currently in development with especially broad scientific utility is the James Webb Space Telescope. In 2013, Explorer mission TESS and Explorer Mission of Opportunity NICER were selected to move forward into formulation. TESS will provide an all-sky transit survey, identifying planets ranging from Earth-sized to gas giants, orbiting a wide range of stellar types and orbital distances.  The NICER mission will study the gravitational, electromagnetic, and nuclear-physics environments of neutron stars.  NICER completed its confirmation review in February of 2014 and has now moved into the development phase. Also in work is an instrument for JAXA’s ASTRO-H mission, and detectors for ESA's Euclid mission.

Completing the missions in development, supporting the operational missions, and funding the research and analysis programs will consume most of the Astrophysics Division resources.

The Future
Since the 2001 decadal survey, the way the universe is viewed has changed dramatically. More than 1000 planets have been discovered orbiting distant stars. Black holes are now known to be present at the center of most galaxies, including the Milky Way galaxy. The age, size and shape of the universe have been mapped based on the primordial radiation left by the big bang. And it has been learned that most of the matter in the universe is dark and invisible, and the universe is not only expanding, but accelerating in an unexpected way.

For the long term future, the Astrophysics goals will be guided based on the results of the 2010 Decadal survey New Worlds, New Horizons in Astronomy and Astrophysics. The priority science objectives chosen by the survey committee include: searching for the first stars, galaxies, and black holes; seeking nearby habitable planets; and advancing understanding of the fundamental physics of the universe.  In 2013 the Astrophysics Implementation Plan was released which describes the activities currently being undertaken in response to the decadal survey recommendations within the current budgetary constraints.

The Astrophysics roadmap Enduring Quests, Daring Visions was developed by a task force of the Astrophysics Subcommittee (APS) in 2013. The Roadmap presents a 30-year vision for astrophysics using the most recent decadal survey as the starting point.