Skip to Main Content

20,000 Leagues Under the Sea: The Webcast

Pin it

20,000 Leagues Under the Sea: The Webcast!

Astrobiologists are visiting the Indian Ocean to explore a bizarre undersea ecosystem that doesn't need sunlight to flourish. You can join them via a live webcast on April 26th!

NASA
Marshall Space Flight Center

action!Live from the Indian Ocean: Join us on April 26th for a live conversation with astrobiologist Cindy Van Dover and others on board the research vessel Knorr. The group of seafaring scientists will describe their exciting adventures exploring one of Earth's most bizarre ecosystems -- undersea hydrothermal vents. The action will begin on Thursday at 10 a.m. PDT (1700 UT). Don't be late! View the Webcast

Link to story audioListen to this story (requires RealPlayer)

April 25, 2001 -- Miles below the ocean surface exist some of the most fascinating habitats for life on Earth. Here, where sunlight never reaches, live complex ecosystems that can appear and disappear within a matter of decades. What provides the thermal and chemical energy that fuels these ecosystems are deep-sea hydrothermal vents, one of the unofficial wonders of the natural world.

see caption
Above: NASA's Astrobiology Institute and Science@NASA are teaming up to present a live webcast from the research vessel Knorr, where scientists sailing the Indian Ocean will discuss their latest discoveries about undersea hydrothermal vents. [more information]

These vents occur at oceanic "spreading centers," mountainous ridges where magma from deep within the Earth's crust forces its way up to the ocean floor, creating new ocean crust and pushing the old crust out of the way. This is the engine that drives apart the Earth's tectonic plates, moving continents about and causing volcanic eruptions and earthquakes. 

From time to time, hydrothermal vents, known as "black smokers," occur along these ridges. They are underwater geysers. At these vent sites, cold ocean water seeps down through cracks in the seafloor to hot spots underground. The water gets superheated to several hundred degrees Celsius and is spit back up in a mineral-rich broth of scalding fluid. And in this bizarre environment, life flourishes.

Until a little over 20 years ago, no one knew that deep-sea hydrothermal vents existed, much less that they were teeming with life. The first such vent was discovered in 1977 east of the Galapagos Islands. Since then, dozens of vents have been discovered and explored along ridges in the Atlantic and Pacific. 

Active vents are inhabited by a complex ecosystem of organisms containing both microbial and more complex animal life. (There is no plant life in the deep ocean, because sunlight cannot reach down that far to drive the process of photosynthesis on which plants depend.) The animal life includes tube worms, shrimp, clams, mussels and crabs. 

Left: A Quicktime video shows a black smoker spewing scalding water cloudy with metal-sulfide minerals. Courtesy Woods Hole Oceanographic Institution.

Last year scientists discovered a vent along a ridge in the Indian Ocean. (It's located south of the southern tip of India and east of the African island nation of Madagascar.) An expedition is currently underway to explore this vent. Japanese scientists visited this vent in August, 2000, but spent only four days there. The new expedition plans to spend several weeks at the new vent. Cindy Lee Van Dover, of the College of William and Mary in Williamsburg, VA, is chief scientist on the research cruise.

Van Dover has been exploring ocean vents for many years. "I really never thought that one could be an explorer in this day and age. But in the ocean, it's absolutely true. You're going places that nobody's ever been before."

Van Dover studies the morphology (body shape) of vent animal life. Mussels are her specialty. Bob Vrijenhoek, a senior scientist at the Monterey Bay Aquarium Research Institute in Moss Landing, CA, takes a different approach. He studies vent animals, as well as the bacteria that inhabit the vents, by analyzing their DNA. Members of Vrijenhoek's research group are participating in the Indian Ocean expedition.

see captionThe study of how animal populations evolve and disperse geographically is known as "biogeography." Hydrothermal vents offer a unique opportunity for biogeographers because the underwater environment is affected by fewer factors than are land environments. "People study biogeography on land and it's always got superimposed on it the effects of latitude and climate," says Van Dover. Hydrothermal vents, in contrast, are "largely decoupled from climate. They are isolated from what goes on above."

Right: These tubeworms thrive on the chemical energy expelled from deep-sea hydrothermal vents. These creatures have no mouth, no gut and no eyes. Instead of feeding, they host chemosynthetic bacteria that produce sugars for the tubeworms in a symbiotic relationship. Courtesy Woods Hole Oceanographic Institution.

Most vent organisms, scientists believe, can exist in their adult form only near an active vent site (although many of these organisms have swimming larval stages, which can travel for great distances). Individual vents remain active for anywhere from a few decades to a few thousand years. When a vent shuts off, the adult animals living there die. Yet as soon as a new vent emerges, it is rapidly colonized. Within a few years, a new vent undergoes a complete transformation from uninhabited to fully populated. 

By studying the similarities and differences among the animals that live at different vents, scientists have begun to piece together a picture of how organisms move from one vent to another, what are the natural barriers to such movement, and how the geography of the deep ocean affects the evolution of the species that inhabit it. 

see captionMost of the research into the fauna (animal life) that inhabit hydrothermal vent systems has been done in the northern region of the Mid-Atlantic Ridge and along the East Pacific Rise, which runs roughly parallel to the west coast of South America. Although similar types of animals can be found at both Atlantic and Pacific vent sites, there is more similarity among the vent ecosystems along the same ridge than there is between the two ridges. For example, shrimp are found at both Atlantic and Pacific sites, but one particular type of shrimp, known as "swarming shrimp," is found only in the Atlantic.

The Pacific is a very old ocean, while the Atlantic is relatively young, having fully formed only about 120 million years ago. One question scientists are interested in is how the animals that inhabited the Pacific ridge system made their way to the younger Atlantic ridge. 

Above: The Atlantic Ocean formed around 120 million years ago, as the continents drifted apart. Courtesy Nova Scotia Museum.

One theory is that some of the organisms may have arrived by way of the Tethys Sea. Don't look for it on a map, unless it's a map of what Earth looked like 100 to 200 million years ago. All that's left of it today is the Mediterranean. The Tethys Sea was a much larger body of water, which once connected the Indian Ocean to the Atlantic. Scientists theorize that animals could have migrated along ocean ridges from the Pacific to the Indian Ocean, and from there through the Tethys Sea to the North Atlantic. 

Some vent organisms, for example, vent shrimp, haven't been around all that long. They are thought to have evolved only 20 million years ago. So they couldn't have arrived by way of the Tethys Sea, because by 20 million years ago it had closed up. Another possible route for organisms to have traveled is through the Indian Ocean around the Cape of Good Hope to the South Atlantic.

see captionLeft: The Knorr expedition is currently in the Indian Ocean exploring a newly discovered vent south of India and east of Madagascar. Click on the image for a map of the known vent sites around the world. Courtesy Woods Hole Oceanographic Institution.

In either case, the Indian Ocean vents may provide a "missing link" between Atlantic and the Pacific vent ecosystems. Early photographs from the Indian Ocean site taken by Japanese scientists show shrimp and mussels that appear very similar to those found at Atlantic vents. "If you had shown me one of those pictures and asked me where that picture came from," says Vrijenhoek, "I'd have told you it came right from the mid-Atlantic ridge." But, he cautions, "we could get fooled just by superficial appearance." He is looking forward to the results of the DNA analysis that his colleagues will perform on these animals.

Recently developed, highly efficient DNA-based tools have dramatically changed the way scientists study evolution. Scientists like Vrijenhoek use these tools to determine the similarities and the slight mutational changes between the genes in organisms found at different vent sites. Using this information leads to a better understanding how the life cycle of an organism interacts with the changing typography of the seafloor to affect both the geographic dispersal and evolution of that organism. "We do the same thing that a forensic scientist would do," Vrijenhoek explains. "We basically extract DNA from the organism and then we use that DNA to look at the degree of relationships within populations, and then between populations."

see captionFor example, Vrijenhoek and his colleagues have found what he calls "genetic discontinuities" among populations of vent amphipods (small crustaceans) that don't appear among populations of other vent organisms. This is due, he explains, to the fact that there is no swimming larval stage in the amphipods' life cycle. As a result, one population of organisms can easily be cut off from another, causing the two populations to drift apart genetically.

Above: An amphipod. Photo by Chris Clark.

Says Vrijenhoek, "The amphipods probably just ride up and down these ridge axes like a corridor. So if there's a disruption in that corridor, through a transform fault or lack of habitat, or something like that, they simply can't get from point A to point B." The isolated populations then evolve along separate pathways. 

Genetic isolation is less likely to occur among populations of animals that have do have a swimming larval stage, because they can more easily cross such physical barriers. This is just what is seen in mussels, clams and tube worms.

Although there is plenty of work yet to be done in the Indian Ocean, Van Dover and Vrijenhoek are also excited about taking a look at other vent sites that remain completely unexplored. The southern Atlantic is one such region.

But if given a choice (and funding), Van Dover would head for the Arctic Ocean, because of its isolation. "The Arctic Basin's been separated from the Atlantic and the Pacific since the Arctic Ocean was formed by shallow fill. So the deep fauna of the Atlantic and the Pacific, the ones that occur at the vents, may not have gotten up into the Arctic. If you wanted to pick the place to go find the most unusual vent organisms, I'd have to choose the Arctic."

Formation of a black smoker:
After sea water seeps into the crust (1), oxygen and potassium (2) and then calcium, sulfate, and magnesium (3) are removed from the water. As the water begins to heat up (4), sodium, potassium, and calcium dissolve from the crust. Magma superheats the water, dissolving iron, zinc, copper, and sulfur (5). The water then rises back to the surface (6), where it mixes with the cold seawater, forming black metal-sulfide compounds (7). Image courtesy Woods Hole Oceanographic Institution.

Web Links

Dive and Discover -- Web page for the science expedition currently investigating the deep-sea vents in the Indian Ocean

Webcast about expedition -- provided by the NASA Astrobiology Institute

Life as We (Didn't) Know It -- Science@NASA article: Biologists always thought life required the Sun's energy, until they found an ecosystem that thrives in complete darkness.

Life on the Edge -- a Science@NASA article about a hands-on experiment for students to learn about life in extreme environments.

Life on the Edge FAQ -- questions and answers about extremophiles

Great Bugs of Fire -- Science@NASA article: NASA sends volcano-loving microbes into orbit

Some Like it Hot -- NASA Astrobiology Institute article about extremophiles


Join our growing list of subscribers - sign up for our express news delivery and you will receive a mail message every time we post a new story!!!

Moresays 'NASA NEWS'Headlines

The Science and Technology Directorate at NASA's Marshall Space Flight Center sponsors the Science@NASA web sites. The mission of Science@NASA is to help the public understand how exciting NASA research is and to help NASA scientists fulfill their outreach responsibilities.
For lesson plans and educational activities related to breaking science news, please visit Thursday's Classroom Source: NASA Astrobiology Institute article
Production Editor: Dr. Tony Phillips
Curator: Bryan Walls
Media Relations: Steve Roy
Responsible NASA official: John M. Horack